Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of GaP and GaP/InGaP insertion layers on the structural and optical properties of InP quantum dots grown by metal-organic vapor phase epitaxy

Identifieur interne : 000F11 ( Main/Repository ); précédent : 000F10; suivant : 000F12

Effect of GaP and GaP/InGaP insertion layers on the structural and optical properties of InP quantum dots grown by metal-organic vapor phase epitaxy

Auteurs : RBID : Pascal:13-0348215

Descripteurs français

English descriptors

Abstract

A comparison of ultra-thin insertion layers (GaP and GaP/In0.4Ga0.6P) on InP self-assembled quantum dots (SAQDs) grown on GaAs (001) substrates using metal-organic vapor phase epitaxy (MOVPE) was studied. Atomic force microscopy (AFM) and photoluminescence (PL) were employed to characterize the optical and structural properties of the grown InP QDs. It is found that the QD dimension, size distribution and density strongly depend on the insertion layer thickness which led to tune the emission wavelength and narrowing of full width at half maximum (FWHM) at low temperature (20-250 K) and at room-temperature PL measurements. This result is attributed to the improved QD size and quantum confinement effect arising from the insertion of the GaP and GaP/In0.4Ga0.6P layers.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0348215

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of GaP and GaP/InGaP insertion layers on the structural and optical properties of InP quantum dots grown by metal-organic vapor phase epitaxy</title>
<author>
<name sortKey="Han, S S" uniqKey="Han S">S. S. Han</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Semiconductor Device Research Laboratory (NanoTec Center of Excellent), Department of Electrical Engineering, Chulalongkorn University</s1>
<s2>Bangkok 10330</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10330</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Higo, A" uniqKey="Higo A">A. Higo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Research Center for Advanced Science and Technology, The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Research Center for Advanced Science and Technology, The University of Tokyo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yunpeng, W" uniqKey="Yunpeng W">W. Yunpeng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deura, M" uniqKey="Deura M">M. Deura</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sugiyama, M" uniqKey="Sugiyama M">M. Sugiyama</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nakano, Y" uniqKey="Nakano Y">Y. Nakano</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Research Center for Advanced Science and Technology, The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Research Center for Advanced Science and Technology, The University of Tokyo</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Panyakeow, S" uniqKey="Panyakeow S">S. Panyakeow</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Semiconductor Device Research Laboratory (NanoTec Center of Excellent), Department of Electrical Engineering, Chulalongkorn University</s1>
<s2>Bangkok 10330</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10330</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ratanathammaphan, S" uniqKey="Ratanathammaphan S">S. Ratanathammaphan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Semiconductor Device Research Laboratory (NanoTec Center of Excellent), Department of Electrical Engineering, Chulalongkorn University</s1>
<s2>Bangkok 10330</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10330</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0348215</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0348215 INIST</idno>
<idno type="RBID">Pascal:13-0348215</idno>
<idno type="wicri:Area/Main/Corpus">000555</idno>
<idno type="wicri:Area/Main/Repository">000F11</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0167-9317</idno>
<title level="j" type="abbreviated">Microelectron. eng.</title>
<title level="j" type="main">Microelectronic engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ambient temperature</term>
<term>Atomic force microscopy</term>
<term>Binary compounds</term>
<term>Comparative study</term>
<term>Energy gap</term>
<term>Gallium phosphide</term>
<term>Indium phosphide</term>
<term>Layer thickness</term>
<term>Low temperature</term>
<term>MOVPE method</term>
<term>Microelectronic fabrication</term>
<term>Narrowing</term>
<term>Optical characteristic</term>
<term>Optical properties</term>
<term>Photoluminescence</term>
<term>Quantum confinement</term>
<term>Quantum dots</term>
<term>Quantum effect</term>
<term>Self-assembled layers</term>
<term>Self-assembly</term>
<term>Temperature measurement</term>
<term>Ternary compounds</term>
<term>Thin films</term>
<term>Ultrathin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Bande interdite</term>
<term>Caractéristique optique</term>
<term>Propriété optique</term>
<term>Méthode MOVPE</term>
<term>Etude comparative</term>
<term>Autoassemblage</term>
<term>Microscopie force atomique</term>
<term>Photoluminescence</term>
<term>Epaisseur couche</term>
<term>Rétrécissement</term>
<term>Basse température</term>
<term>Température ambiante</term>
<term>Mesure température</term>
<term>Effet quantique</term>
<term>Confinement quantique</term>
<term>Phosphure de gallium</term>
<term>Phosphure d'indium</term>
<term>Composé ternaire</term>
<term>Composé binaire</term>
<term>Point quantique</term>
<term>Couche ultramince</term>
<term>Couche mince</term>
<term>Couche autoassemblée</term>
<term>Fabrication microélectronique</term>
<term>7867</term>
<term>8107T</term>
<term>8535B</term>
<term>8116D</term>
<term>InGaP</term>
<term>InP</term>
<term>6837P</term>
<term>8540H</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A comparison of ultra-thin insertion layers (GaP and GaP/In
<sub>0.4</sub>
Ga
<sub>0.6</sub>
P) on InP self-assembled quantum dots (SAQDs) grown on GaAs (001) substrates using metal-organic vapor phase epitaxy (MOVPE) was studied. Atomic force microscopy (AFM) and photoluminescence (PL) were employed to characterize the optical and structural properties of the grown InP QDs. It is found that the QD dimension, size distribution and density strongly depend on the insertion layer thickness which led to tune the emission wavelength and narrowing of full width at half maximum (FWHM) at low temperature (20-250 K) and at room-temperature PL measurements. This result is attributed to the improved QD size and quantum confinement effect arising from the insertion of the GaP and GaP/In
<sub>0.4</sub>
Ga
<sub>0.6</sub>
P layers.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0167-9317</s0>
</fA01>
<fA02 i1="01">
<s0>MIENEF</s0>
</fA02>
<fA03 i2="1">
<s0>Microelectron. eng.</s0>
</fA03>
<fA05>
<s2>112</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of GaP and GaP/InGaP insertion layers on the structural and optical properties of InP quantum dots grown by metal-organic vapor phase epitaxy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HAN (S. S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HIGO (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YUNPENG (W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DEURA (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SUGIYAMA (M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>NAKANO (Y.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PANYAKEOW (S.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>RATANATHAMMAPHAN (S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Semiconductor Device Research Laboratory (NanoTec Center of Excellent), Department of Electrical Engineering, Chulalongkorn University</s1>
<s2>Bangkok 10330</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Research Center for Advanced Science and Technology, The University of Tokyo</s1>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>143-148</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20003</s2>
<s5>354000504215450280</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0348215</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Microelectronic engineering</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A comparison of ultra-thin insertion layers (GaP and GaP/In
<sub>0.4</sub>
Ga
<sub>0.6</sub>
P) on InP self-assembled quantum dots (SAQDs) grown on GaAs (001) substrates using metal-organic vapor phase epitaxy (MOVPE) was studied. Atomic force microscopy (AFM) and photoluminescence (PL) were employed to characterize the optical and structural properties of the grown InP QDs. It is found that the QD dimension, size distribution and density strongly depend on the insertion layer thickness which led to tune the emission wavelength and narrowing of full width at half maximum (FWHM) at low temperature (20-250 K) and at room-temperature PL measurements. This result is attributed to the improved QD size and quantum confinement effect arising from the insertion of the GaP and GaP/In
<sub>0.4</sub>
Ga
<sub>0.6</sub>
P layers.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A16D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Caractéristique optique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Optical characteristic</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Característica óptica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Autoassemblage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Self-assembly</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Rétrécissement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Narrowing</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estrechamiento</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Basse température</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Low temperature</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Baja temperatura</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Température ambiante</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Ambient temperature</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Mesure température</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Temperature measurement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Effet quantique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Quantum effect</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Efecto cuántico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Confinement quantique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Quantum confinement</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Confinamiento cuántico</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Couche ultramince</s0>
<s5>27</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Ultrathin films</s0>
<s5>27</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>28</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>28</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Couche autoassemblée</s0>
<s5>29</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Self-assembled layers</s0>
<s5>29</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8535B</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8116D</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>InGaP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>6837P</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>8540H</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>16</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>16</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>16</s5>
</fC07>
<fN21>
<s1>329</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F11 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000F11 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0348215
   |texte=   Effect of GaP and GaP/InGaP insertion layers on the structural and optical properties of InP quantum dots grown by metal-organic vapor phase epitaxy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024